Магнитные свойства вещества. Магнитная проницаемость

Если разместить в магнитном поле какой-либо предмет, то его «поведение» и тип внутренних структурных изменений будет зависеть от материала, из которого предмет изготовлен. Все известные вещества можно разделить на пять основных групп: парамагнетики, ферромагнетики и антиферромагнетики, ферримагнетики и диамагнетики. В соответствии с данной классификацией различают магнитные свойства вещества. Чтобы разобраться, что же скрывается за указанными терминами, рассмотрим каждую группу более подробно.

Вещества, проявляющие свойства парамагнетизма, характеризуются магнитной проницаемостью с положительным знаком, причем вне зависимости от значения напряженности внешнего магнитного поля, в котором оказывается предмет. Наиболее известными представителями этой группы являются и газообразный кислород, металлы щелочноземельной и щелочной групп, а также железистые соли.

Высокая магнитная восприимчивость положительного знака (достигает 1 млн.) присуща ферромагнетикам. Будучи зависимой от интенсивности внешнего поля и температуры, восприимчивость варьирует в широких пределах. Важно отметить, что так как моменты элементарных частиц разных подрешеток в структуре равны, то суммарное значение момента нулевое.

Как по названию, так и по некоторым свойствам им близки ферримагнитные вещества. Их объединяет высокая зависимость восприимчивости от нагревания и значения напряженности поля, однако есть и различия. размещенных в подрешетках атомов друг другу не равны, поэтому, в отличие от предыдущей группы, общий момент отличен от нуля. Веществу присуща самопроизвольная намагниченность. Связь подрешеток антипараллельна. Наиболее известны ферриты. Магнитные свойства веществ данной группы высоки, поэтому они часто применяются в технике.

Особый интерес представляет группа антиферромагнетиков. При охлаждении подобных веществ ниже определенной температурной границы атомы и их ионы, размещенные в структуре кристаллической решетки, естественным образом изменяют свои магнитные моменты, приобретая противопараллельное ориентирование. Совершенно иной процесс имеет место при нагревании вещества - у него регистрируются магнитные свойства, характерные для группы парамагнетиков. Примерами могут служить карбонаты, оксиды и пр.

  • 1.2.2 Силы в механике
  • 1.2.3 Работа сил в механике, энергия. Закон сохранения энергии в механике
  • 1.3 Динамика вращательного движения твердых тел
  • 1.3.1 Момент силы, момент импульса. Закон сохранения момента импульса
  • 1.3.2 Кинетическая энергия вращательного движения. Момент инерции
  • II Раздел молекулярная физика и термодинамика
  • 2.1 Основные положения молекулярно-кинетической теории газов
  • 2.1.1 Агрегатные состояния вещества и их признаки. Методы описания физических свойств вещества
  • 2.1.2 Идеальный газ. Давление и температура газа. Шкала температур
  • 2.1.3 Законы идеального газа
  • 2.2 Распределение Максвелла и Больцмана
  • 2.2.1 Скорости газовых молекул
  • 2.3. Первое начало термодинамики
  • 2.3.1 Работа и энергия в тепловых процессах. Первое начало термодинамики
  • 2.3.2 Теплоемкость газа. Применение первого начала термодинамики к изопроцессам
  • 2.4. Второе начало термодинамики
  • 2.4.1. Работа тепловых машин. Цикл Карно
  • 2.4.2 Второе начало термодинамики. Энтропия
  • 2.5 Реальные газы
  • 2.5.1 Уравнение Ван-дер-Ваальса. Изотермы реального газа
  • 2.5.2 Внутренняя энергия реального газа. Эффект Джоуля-Томсона
  • III Электричество и магнетизм
  • 3.1 Электростатика
  • 3.1.1 Электрические заряды. Закон Кулона
  • 3.1.2 Напряженность электрического поля. Поток линий вектора напряженности
  • 3.1.3 Теорема Остроградского - Гаусса и его применение для расчета полей
  • 3.1.4 Потенциал электростатического поля. Работа и энергия заряда в электрическом поле
  • 3.2 Электрическое поле в диэлектриках
  • 3.2.1 Электроемкость проводников, конденсаторы
  • 3.2.2 Диэлектрики. Свободные и связанные заряды, поляризация
  • 3.2.3 Вектор электростатической индукции. Сегнетоэлектрики
  • 3.3 Энергия электростатического поля
  • 3.3.1 Электрический ток. Законы Ома для постоянного тока
  • 3.3.2 Разветвленные цепи. Правила Кирхгофа. Работа и мощность постоянного тока
  • 3.4 Магнитное поле
  • 3.4.1 Магнитное поле. Закон Ампера. Взаимодействие параллельных токов
  • 3.4.2 Циркуляция вектора индукции магнитного поля. Закон полного тока.
  • 3.4.3 Закон Био-Савара-Лапласа. Магнитное поле прямого тока
  • 3.4.4 Сила Лоренца Движение заряженных частиц в электрических и магнитных полях
  • 3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц
  • 3.5 Магнитные свойства вещества
  • 3.5.1 Магнетики. Магнитные свойства веществ
  • 3.5.2 Постоянные магниты
  • 3.6 Электромагнитная индукция
  • 3.6.1 Явления электромагнитной индукции. Закон Фарадея. Токи Фуко
  • 3.6.2 Ток смещения. Вихревое электрическое поле Уравнения Максвелла
  • 3.6.3 Энергия магнитного поля токов
  • IV Оптика и основы ядерной физики
  • 4.1. Фотометрия
  • 4.1.1 Основные фотометрические понятия. Единицы измерений световых величин
  • 4.1.2 Функция видности. Связь между светотехническими и энергетическими величинами
  • 4.1.3 Методы измерения световых величин
  • 4.2 Интерференция света
  • 4.2.1 Способы наблюдения интерференции света
  • 4.2.2 Интерференция света в тонких пленках
  • 4.2.3 Интерференционные приборы, геометрические измерения
  • 4.3 Дифракция света
  • 4.3.1 Принцип Гюйгенса-Френеля. Метод зон Френеля. Зонная пластинка
  • 4.3.2 Графическое вычисление результирующей амплитуды. Применение метода Френеля к простейшим дифракционным явлениям
  • 4.3.3 Дифракция в параллельных лучах
  • 4.3.4 Фазовые решетки
  • 4.3.5 Дифракция рентгеновских лучей. Экспериментальные методы наблюдения дифракции рентгеновских лучей. Определение длины волны рентгеновских лучей
  • 4.4 Основы кристаллооптики
  • 4.4.1 Описание основных экспериментов. Двойное лучепреломление
  • 4.4.2 Поляризация света. Закон Малюса
  • 4.4.3 Оптические свойства одноосных кристаллов. Интерференция поляризованных лучей
  • 4.5 Виды излучения
  • 4.5.1 Основные законы теплового излучения. Абсолютно черное тело. Пирометрия
  • 4.6 Действие света
  • 4.6.1 Фотоэлектрический эффект. Законы внешнего фотоэффекта
  • 4.6.2 Эффект Комптона
  • 4.6.3 Давление света. Опыты Лебедева
  • 4.6.4 Фотохимическое действие света. Основные фотохимические законы. Основы фотографии
  • 4.7 Развитие квантовых представлений об атоме
  • 4.7.1 Опыты Резерфорда по рассеянию альфа-частиц. Планетарно-ядерная модель атома
  • 4.7.2 Спектр атомов водорода. Постулаты Бора
  • 4.7.3 Корпускулярно-волновой дуализм. Волны де Бройля
  • 4.7.4 Волновая функция. Соотношение неопределенности Гейзенберга
  • 4.8 Физика атомного ядра
  • 4.8.1 Строение ядра. Энергия связи атомного ядра. Ядерные силы
  • 4.8.2 Радиоактивность. Закон радиоактивного распада
  • 4.8.3 Радиоактивные излучения
  • 4.8.4 Правила смещения и радиоактивные ряды
  • 4.8.5 Экспериментальные методы ядерной физики. Методы регистрации частиц
  • 4.8.6 Физика элементарных частиц
  • 4.8.7 Космические лучи. Мезоны и гипероны. Классификация элементарных частиц
  • Содержание
  • 3.5 Магнитные свойства вещества

    3.5.1 Магнетики. Магнитные свойства веществ

    Впредыдущей главе предполагалось, что провода, по которым текут токи, создающие магнитное поле, находятся в вакууме. Если несущие ток провода находятся в какой-либо среде, магнитное поле изменяется. Это объясняется тем, что всякое вещество является магнетиком, т. е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле В " , которое накладывается на обусловленное токами поле В 0 . Оба поля в сумме дают результирующее поле

    В = В 0 + В "

    Это явление было впервые обнаружено Ампером, который обнаружил, что внесение железного сердечника в соленоид равносильно увеличению числа ампер-витков этого соленоида. Впоследствии было установлено, что индукция В магнитного поля в веществе может быть и больше и меньше, чем индукция B 0 того же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает своими магнитными В ".

    Вещества, способные изменять параметры магнитного поля, принято называть магнетиками. Для характеристики магнитных свойств веществ введена величина μ = B / B 0 , называемая магнитной проницаемостью этого вещества. По значению магнитной проницаемости все магнетики делятся на три группы.

    а) Поскольку внутреннее магнитное поле в диамагнетике направлено против внешнего поля, модуль индукции результирующего поля в диамагнетике меньше, чем модуль индукции поля ввакууме, т. е. В <В 0 . Поэтому вещества, у которых μ<. l , называют диамагнетиками . К ним относятся, например, элементы Bi, Cu, Ag, Au, Hg, Be, CI,инертные газы и другие вещества. Магнитная проницаемость μ диамагнетика не зависит от индукции В 0 внешнего магнитного поля.

    б) Парамагнитные вещества состоят из атомов, в которых орбитальные магнитные моменты электронов не скомпенсированы. Поэтому атомы диамагнетика имеют отличные от нуля магнитные моменты. Однако при отсутствии внешнего магнитного поля тепловое движение атомов приводит к хаотическому расположению их магнитных моментов, вследствие чего любой объем парамагнетика в целом магнитным моментом не обладает.

    При внесении парамагнетика во внешнее магнитное поле его атомы в большей или меньшей степени (в зависимости от индукции этого поля) располагаются так, что их магнитные моменты ориентируются по направлению внешнего поля. В результате впарамагнетике возникает внутреннее магнитное поле, индукция которого В совпадает по направлению с индукцией В„ внешнего поля. Поэтому модуль индукции В результирующего магнитного поля в парамагнетике больше, чем модуль индукции В 0 поля ввакууме, т. е. В>В 0 . Поэтому парамагнетиками называют вещества, у которых μ>1. К ним, в частности, относятся Na, Mg, К, Са, Al, Mn, Pt, кислород и многие другие элементы, а также растворы некоторых солей. Магнитная проницаемость μ парамагнетика, так же как и диамагнетика, не зависит от индукции В 0 внешнего магнитного поля.

    Следует отметить, что значение μ у диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка 10 -5 - Ю -6 , поэтому диа- и парамагнетики относятся к слабомагнитным веществам.

    в) В отличие от диа- и парамагнетиков, у которых магнитные свойства определяются орбитальными магнитными моментами атомных электронов, магнитные свойства ферромагнетиков обусловлены спиновыми магнитными моментами электронов. Ферромагнитные вещества (всегда имеющие кристаллическую структуру) состоят из атомов, в которых не у всех электронов спиновые магнитные моменты взаимно скомпенсированы.

    В ферромагнетике существуют области самопроизвольного (спонтанного) намагничения, которые называют доменами . (Размер доменов порядка 10 -4 - 10 -7 м.) В каждом домене спиновые магнитные моменты атомных электронов имеют одинаковую ориентацию, вследствие чего домен оказывается намагниченным до состояния насыщения. Поскольку при отсутствии внешнего магнитного поля магнитные моменты доменов ориентированы хаотически, ферромагнитный образец в таких условиях в целом не намагничен.

    Под действием внешнего магнитного поля происходит ориентация магнитных моментов доменов по направлению этого поля. В результате в ферромагнетике возникает сильное внутреннее магнитное поле с магнитной индукцией В" , совпадающей по направлению с магнитной индукцией внешнего поля В 0 . Поэтому модуль индукции В результирующего магнитного поля в ферромагнетике много больше, поле в вакууме, т. е. » 0 . Когда все магнитные моменты доменов под действием внешнего магнитного поля будут ориентированы по полю, наступает насыщение ферромагнитного образца.

    По достижении определенных для каждого вещества температурных точках, называемых точкой Кюри выше, доменная структура разрушается, и ферромагнетик теряет присущие ему свойства.

    Таким образом, вещества, у которых μ»1, называют ферромагнетиками. К ним относятся элементы Fe, Co, Ni, Gd и многие сплавы. Во внешнем магнитном поле ферромагнитный образец ведет себя подобно парамагнетику. Однако магнитная проницаемость μ ферромагнетика зависит от напряженности Н внешнего магнитного поля и изменяется в довольно широких пределах, вследствие чего зависимость В = f (H ) является нелинейной. Значения μ у некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным веществам.

    Для каждого ферромагнетика существует определенная температура, называемая точкой Кюри, при нагревании выше которой данное вещество теряет ферромагнитные свойства и превращается в парамагнетик. Например, для Fe точка Кюри равна 1043 К, а для Ni - 631 К.

    Для объяснения процесса намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи (молекулярные токи). Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается - его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле В" . Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют намагниченностью и обозначают буквой J . Намагниченность принято связывать не с магнитной индукцией, а с напряженностью поля. Полагают, что в каждой точке

    В отличие от диэлектрической восприимчивости, которая может иметь лишь положительные значения (поляризованность Р в изотропном диэлектрике всегда направлена по полю Е ), магнитная восприимчивость χ бывает как положительной, так и отрицательной. Поэтому магнитная проницаемость μ может быть как больше, так и меньше единицы.

    Намагниченность слабомагнитных веществ изменяется с напряженностью поля линейно. Намагниченность ферромагнетиков з, висит от Н сложным образом. На рисунке - 3.39 дана кривая намагничения ферромагнетика, магнитный момент которого первоначально, был равен нулю. Уже в полях порядка нескольких эрстед (~100 А/м) намагниченность J достигает насыщения. Основная кривая намагничения на диаграмме В - Н приведена рис. 59.2 (кривая 0-1). По достижении насыщения В продолжает расти с Н по линейно закону. Если довести намагничение до насыщения (точка 1 на рисунке - 3.40) и затем уменьшать напряженность магнитного поля, то индукция В следует не по первоначальной кривой 0-1, а изменяется в соответствии с кривой 1-2. В результате, когда напряженность внешнего поля станет равной нулю (точка 2), намагничение не исчезает и характеризуется величиной В r , которая называется остаточной индукцией . Намагниченность имеет при этом значение J r , называемое остаточной намагниченностью.

    Рисунок - 3.39

    Рисунок - 3.40

    Индукция В обращается в нуль лишь под действием поля Н с , имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Н с называется коэрцитивной силой .

    Существование остаточной намагниченности делает возможным изготовление постоянных магнитов, т. е. тел, которые без затраты энергии на поддержание макроскопических токов обладают магнитным моментом и создают в окружающем их пространстве магнитное поле. Постоянный магнит тем лучше сохраняет свои свойства, чем больше коэрцитивная сила материала, из которого он изготовлен.

    При действии на ферромагнетик переменного магнитного поля индукция изменяется в соответствии с кривой /-2 -3-4-5-1 (рисунок - 3.40), которая называется петлей гистерезиса (аналогичная петля получается и на диаграмме J - H ). Если максимальные значения Н таковы, что намагниченность достигает насыщения, получается так называемая максимальная петля гистерезиса (сплошная петля на рисунок - 3.40). Если при амплитудных значениях Н насыщение не достигается, получается петля, называемая частным циклом (пунктирна петля на рисунке). Частных циклов существует бесконечное множество, все они лежат внутри максимальной петли гистерезис. Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, оно в сильной мере завис от предыстории образца - от того, в каких полях он побыл прежде.

    В связи с неоднозначностью зависимости В от Н понятие магнитной проницаемости применяется лишь к основной кривой намагничения. Магнитнная проницаемость ферромагнетиков μ , следовательно, и магнитная восприимчивость χ является функцией напряженности поля. На рисунке - 3.41 изображена основная кривая намагничения. (ведем из начала координат прямую линию, проходящую через произвольно точку кривой. Тангенс угла наклона: прямой пропорционален отношению В/Н, т. е. магнитной проницаемости μ, для соответствующего значения напряженности Н. При увеличении Н от нуля угол наклона (а значит и μ ) сначала растет. В точке 2 он достигает максимума (прямая О является касательной к кривой), а затем убывает. На рисунке - 3.41,б дан график зависимости μ от Н. Из рисунка видно, что максимальное значение проницаемости достигается несколько раньше насыщения. При неограниченном возрастании Н проницаемо асимптотически приближается к единице. Это следует из того, / в выражении μ = 1 - J / H не может превысить значения 1.

    Рисунок - 3.41

    Величины В r (или J r ), Н с и μ являются основными характеристиками ферромагнетика. Если коэрцитивная сила Н с имеет большую величину ферромагнетик называется жестким . Для него характерно широкая петля гистерезиса. Ферромагнетик с малой Н с (и соответственно узкой петлей гистерезиса) называется мягким . В зависимости от назначения берутся ферромагнетики с той или иной характеристикой. Так, для постоянных магнитов употреблял жесткие ферромагнетики, а для сердечников трансформаторов мягкие. Наличие точки Кюри у ферромагенитков можно понять, учитывая, что атомы участвуют в тепловом движении: пока температура небольшая, атомы сохраняют параллельную ориентацию своих магнитных моментов в пределах доменов. Но при увеличении температуры увеличиваются и тепловое движение Когда вещество достигает определенного для данного вещества температуры, тепловое движение разрушает эту ориентацию – домен исчезает. Далее ферромагенитик ведет себя как парамагнетик.

    Основы теории ферромагнетизма были созданы Я. И. Френкелем и В. Гейзенбергом в 1928 г. В наше время магнетики, их магнитные свойства широко используются в науке и технике.

    Магнитными свойствами обладают в той или иной мере все материалы, так как эти свойства являются отражением структурных закономерностей, присущих веществу на микроуровне. Особенности структуры обусловливают различия в магнитных свойствах веществ, то есть в характере их взаимодействия с магнитным полем.

    Строение вещества и магнетизм

    Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.

    Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.

    Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.

    Поведение вещества в магнитном поле

    При действии внешнего магнитного поля векторы магнитных моментов частиц изменяют направление – тело намагничивается, в нем появляется собственное магнитное поле. Характер этого изменения и его интенсивность, определяющие магнитные свойства веществ, обусловлены различными факторами:

    • особенности структуры электронных оболочек в атомах и молекулах вещества;
    • межатомные и межмолекулярные взаимодействия;
    • особенности структуры кристаллических решеток (анизотропия);
    • температура вещества;
    • напряженность и конфигурация магнитного поля и так далее.

    Намагниченность вещества пропорциональна напряженности магнитного поля в нем. Их соотношение определяется особым коэффициентом – магнитной восприимчивостью. У вакуума она равна нулю, у некоторых веществ отрицательна.

    Величину, характеризующую соотношение магнитной индукции и напряженности поля в веществе, принято называть магнитной проницаемостью. В вакууме индукция и напряженность совпадают, и проницаемость его равна единице. Магнитную проницаемость вещества можно выражать как относительную величину. Это соотношение абсолютных значений ее для данного вещества и для вакуума (последняя величина принята в качестве магнитной постоянной).

    Классификация веществ по магнитным свойствам

    По типу поведения различных твердых материалов, жидкостей, газов в магнитном поле выделяют несколько групп:

    • диамагнетики;
    • парамагнетики;
    • ферромагнетики;
    • ферримагнетики;
    • антиферромагнетики.

    Основные магнитные характеристики вещества, лежащие в основе классификации – это магнитная восприимчивость и магнитная проницаемость. Охарактеризуем основные свойства, присущие каждой группе.


    Диамагнетики

    В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.

    Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.

    Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.

    Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.

    Парамагнетики

    Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.


    В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.

    Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.

    К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.

    Ферромагнетики

    Существует небольшая группа веществ, которые благодаря особенностям структуры обладают очень высокими магнитными свойствами. Первым металлом, у которого обнаружились эти качества, было железо, и благодаря ему данная группа получила наименование ферромагнетиков.


    Строение ферромагнетиков характеризуется наличием особых структур – доменов. Это области, где намагниченность образуется спонтанно. Благодаря особенностям межатомного и межмолекулярного взаимодействия у ферромагнетиков устанавливается наиболее энергетически выгодное расположение атомных и электронных магнитных моментов. Они приобретают параллельную направленность по так называемым направлениям легкого намагничивания. Однако весь объем, например, кристалла железа не может приобрести однонаправленную самопроизвольную намагниченность – это повышало бы общую энергию системы. Поэтому система разбивается на участки, спонтанная намагниченность которых в ферромагнитном теле компенсирует друг друга. Так образуются домены.

    Магнитная восприимчивость ферромагнетиков чрезвычайно велика, может составлять от нескольких десятков до сотен тысяч и в большой степени зависит от напряженности внешнего поля. Причина этого заключается в том, что ориентация доменов по направлению поля также оказывается энергетически выгодной. Направление вектора намагниченности части доменов обязательно совпадет с вектором напряженности поля, и энергия их будет наименьшей. Такие области разрастаются, и одновременно сокращаются невыгодно ориентированные домены. Намагниченность увеличивается, и нарастает магнитная индукция. Процесс происходит неравномерно, и график связи индукции с напряженностью внешнего поля называют кривой намагничивания ферромагнитного вещества.

    При повышении температуры до некоторой пороговой величины, называемой точкой Кюри, доменное строение вследствие усиления теплового движения нарушается. В этих условиях ферромагнетик проявляет парамагнитные качества.

    Помимо железа и стали, ферромагнитные свойства присущи кобальту и никелю, некоторым сплавам и редкоземельным металлам.

    Ферримагнетики и антиферромагнетики

    Двум видам магнетиков также свойственна доменная структура, но магнитные моменты в них ориентируются антипараллельно. Это такие группы, как:

    • Антиферромагнетики. Магнитные моменты доменов в этих веществах равны по численному значению и взаимно скомпенсированы. По этой причине магнитные свойства материалов антиферромагнетиков характеризуются крайне низкой магнитной восприимчивостью. Во внешнем поле они проявляют себя как очень слабые парамагнетики. Выше пороговой температуры, называемой точкой Нееля, такое вещество становится обычным парамагнетиком. Антиферромагнетиками являются хром, марганец, некоторые редкоземельные металлы, актиноиды. Некоторые антиферромагнитные сплавы имеют две точки Нееля. Когда температура меньше нижнего порога, материал становится ферромагнитным.
    • Ферримагнетики. У веществ этого класса величины магнитных моментов разных структурных единиц не равны, благодаря чему не происходит их взаимной компенсации. Магнитная восприимчивость их зависит от температуры и напряженности намагничивающего поля. К ферримагнетикам относятся ферриты, в состав которых входит оксид железа.

    Понятие о гистерезисе. Постоянный магнетизм

    Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.

    Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.


    Магнитная твердость и мягкость

    Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.

    В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.

    Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.

    Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.

    Еще немного об использовании магнитных материалов

    Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.


    Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.

    Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.

    Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.

    Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

    \(~\vec B = \vec B_0 + \vec B_1,\)

    где \(~\vec B\) - магнитная индукция поля в веществе; \(~\vec B_0\) - магнитная индукция поля в вакууме, \(~\vec B_1\) - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ, которая называется магнитной проницаемостью вещества

    \(~\mu = \dfrac B{B_0}.\)

    • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

    Диа- и пара- магнетики

    Все вещества обладают определенными магнитными свойствами, т. е. являются магнетиками . Для большинства веществ магнитная проницаемость μ близка к единице и не зависит от величины магнитного поля. Вещества, для которых магнитная проницаемость незначительно меньше единицы (μ < 1), называются диамагнетиками , незначительно больше единицы (μ > 1) - парамагнетиками . Вещества, магнитная проницаемость которых зависит от величины внешнего поля и может значительно превышать единицу (μ » 1), называются ферромагнетиками .

    Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998); парамагнетиков - натрий, кислород, алюминий (μ = 1,00023); ферромагнетиков - кобальт, никель, железо (μ достигает значения 8⋅10 3).

    Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

    Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых он состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

    1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

    2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

    Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

    Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

    Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля \(~\vec B_0\) и поля \(~\vec B"\) токов намагничивания i′ , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

    Рис. 3

    В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции \(~\vec B\) результирующего поля будет меньше модуль вектора магнитной индукции \(~\vec B_0\) внешнего поля.

    В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

    Рис. 4

    Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

    Ферромагнетики

    Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

    Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

    Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

    Если поместить ферромагнетик во внешнее магнитное поле В 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

    Свойства ферромагнетиков

    1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

    2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

    3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 ;

    4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

    Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B ´ 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

    \(~\mu = \dfrac B{B_0} = \dfrac {B_0 + B_1}{B_0} = 1 + \dfrac {B_1}{B_0};\)

    5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).).

    Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0 . Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

    Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

    Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

    Литература

    1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
    2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.

    МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
    Простейшие проявления магнетизма известны очень давно и знакомы большинству из нас. Однако объяснить эти, казалось бы, простые явления на основе фундаментальных принципов физики удалось лишь сравнительно недавно. Существуют магниты двух разных видов. Одни - так называемые постоянные магниты, изготовляемые из "магнитно-твердых" материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из "магнитно-мягкого" железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.
    Магнитные полюса и магнитное поле. Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец - южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются. Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний - одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита. Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.) М. Фарадей (1791-1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины. Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I, расположен перпендикулярно линиям индукции, то по закону Ампера сила F, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

    Где F - сила в ньютонах, I - ток в амперах, l - длина в метрах. Единицей измерения магнитной индукции является тесла (Тл)
    (см. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ).
    Гальванометр. Гальванометр - чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Намагничивающая сила и напряженность магнитного поля. Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков - величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н:

    Где m0 - т.н. магнитная постоянная, имеющая универсальное значение 4pЧ10-7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н. Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже). На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.



    Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894-1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902-1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.
    Магнитная проницаемость и ее роль в магнетизме. Магнитная проницаемость m - это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями - от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B, но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей - в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля. На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 1-2, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы "память" материала о "прошлой истории", откуда и название "гистерезис". Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1-3). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)-(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (-H) приводит кривую гистерезиса в третий квадрант - участок 4-5. Следующее за этим уменьшение величины (-H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.



    Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов - таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.



    Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой - сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).
    Теории магнетизма. Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория "увяла". В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное "трение". Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и "размножение" магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.



    Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению "магнитного заряда" полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами. В 1907 П. Вейс ввел понятие "домена", ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших "колоний" атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10-6 мм3. Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. "Стенка" и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой "переходные слои", в которых происходит изменение направления намагниченности доменов.



    В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.



    Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г), итогом чего оказывается слабый магнетизм.



    Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них - так называемый эффект Баркгаузена, второе - метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности. Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe3O4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал. Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве "элементарных магнитов" рассматриваются именно электроны как носители спина. Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа - типичного ферромагнитного материала. Две его оболочки (K и L), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K-оболочке спин одного из электронов положителен, а другого - отрицателен. В L-оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M-оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой - в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N-оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.



    Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А. Эйнштейном и В.де Гаазом, а другой - С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.



    За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.
    МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
    Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см. выше). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.
    Измерение магнитных свойств. При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них -измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения "резонансных" частот, связанных с намагничением вещества. Атомы представляют собой крошечные "гироскопы" и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением R = mv/eB, где m - масса частицы, v - ее скорость, e - ее заряд, а B - магнитная индукция поля. Частота такого кругового движения равна


    где f измеряется в герцах, e - в кулонах, m - в килограммах, B - в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными "естественным" частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором - циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне). Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.



    Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 1010 Гц/Тл для намагниченности, связанной с электронами, и порядка 107 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов. Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных "гироскопов" образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.



    Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.
    Расчет магнитных свойств. Магнитная индукция поля Земли составляет 0,5*10 -4 Тл, тогда как поле между полюсами сильного электромагнита - порядка 2 Тл и более. Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био - Савара - Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I (ампер), на расстоянии r (метров) от провода равна


    Индукция в центре кругового витка радиуса R с током I равна (в тех же единицах):

    Плотно намотанная катушка провода без железного сердечника называется соленоидом. Магнитная индукция, создаваемая длинным соленоидом c числом витков N в точке, достаточно удаленной от его концов, равна

    Здесь величина NI/L есть число ампер (ампер-витков) на единицу длины соленоида. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю. Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M.



    Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m0(H + Ha), или B = m0(H + M). Отношение M/H называется магнитной восприимчивостью и обозначается греческой буквой c; c - безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.
    Величина B/H, характеризующая магнитные свойства
    материала, называется магнитной проницаемостью и обозначается через ma, причем ma = m0m, где ma - абсолютная, а m - относительная проницаемости, m = 1 + c. В ферромагнитных веществах величина c может иметь очень большие значения -до 10 4-10 6. Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных - немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3). Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены. - поля с напряжённостью Н?0,5=1,0 МЭ (граница условна). Нижнее значение С. м. п. соответствует макс. значению стационарного поля =500 кЭ, к рое может быть доступно средствам совр. техники, верхнее полю 1 МЭ, даже кратковрем. воздействие к рого… … Физическая энциклопедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

    - (от древнегреч. physis природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства… … Энциклопедия Кольера

    Термин момент применительно к атомам и атомным ядрам может означать следующее: 1) спиновый момент, или спин, 2) магнитный дипольный момент, 3) электрический квадрупольный момент, 4) прочие электрические и магнитные моменты. Различные типы… … Энциклопедия Кольера

    Электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле,… … Энциклопедия Кольера

    We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this. OK



    error: Контент защищен !!