В процессе фотосинтеза происходит. Процесс фотосинтез: кратко и понятно и для детей

Фотосинтез - важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на Земле.

Фотосинтез - это процесс образования органических соединений из диоксида углерода (CO 2) и воды (H 2 O) с использованием энергии света.

Хлоропласты в клетках растений и складки цитоплазматической мембраны прокариот содержат зеленый пигмент - хлорофилл . Хлорофилл обладает особой химической структурой, которая позволяет ему улавливать кванты света. Молекула хлорофилла способна возбуждаться под действием солнечного света, отдавать свои электроны и перемещать их на более высокие энергетические уровни.

Пример:

Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются молекулами переносчика электронов НАДФ + (никотинамидадениндинуклеотидфосфата). При этом их энергия частично расходуется на образование АТФ.

Процесс фотосинтеза включает две последовательные фазы: световую и темновую.

Световая фаза

Световая фаза - это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Она осуществляется на свету, в мембранах гран тилакоидов, при участии белков-переносчиков и АТФ - синтетазы.

Световая фаза фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды .

На фотосинтетических мембранах гран хлоропластов происходят следующие процессы:

  • возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;
  • восстановление акцепторов электронов - НАДФ + до НАДФ· Н 2 ;
  • фотолиз воды, происходящий при участии квантов света:

2 H 2 O → 4 H + + 4 e − + O 2

Результатами световых реакций являются:

  • фотолиз воды с образованием свободного кислорода;
  • синтез АТФ;
  • восстановление НАДФ + до НАДФ· Н.

Обрати внимание!

В реакциях световой фазы фотосинтеза накапливается энергия в НАДФ· Н и АТФ, которая тратится в процессах темновой фазы.

Синтез АТФ из АДФ за счёт энергии света - очень эффективный процесс: за одно и то же время в хлоропластах образуется в \(30\) раз! больше АТФ, чем в митохондриях.

Во время световой фазы образуются богатые энергией молекулы и ионы водорода, необходимые для темновой фазы фотосинтеза. Дальнейшие процессы фотосинтеза могут идти и без солнечного освещения.

Темновая фаза

Реакции темновой фазы фотосинтеза протекают независимо от света .

Темновая фаза - процесс преобразования CO 2 в глюкозу с использованием энергии, запасенной в молекулах АТФ и НАДФ· Н.

Эти реакции осуществляются в строме хлоропластов, куда из тилакоидов поступают богатые энергией вещества: НАДФ· Н и АТФ, накопленные в реакциях световой фазы фотосинтеза.

Источник углерода (CO 2) растение получает из воздуха через устьица.

Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина , по имени его открывателя.

Результатом темновых реакций является превращение углекислого газа в глюкозу, а затем в крахмал.

Помимо молекул глюкозы в строме хлоропластов происходит образование аминокислот, нуклеотидов, спиртов.

Суммарные уравнения и частные реакции фотосинтеза представлены в таблице.

Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

Критерии сравнения Световая фаза Темная фаза
Солнечный свет Обязателен Необязателен
Место протекание реакций Граны хлоропласта Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света Зависит от АТФ и НАДФ Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза Углекислый газ
Суть фазы и что образуется Выделяется свободный О2, образуется АТФ и НАДФ Н2 Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео

Фотосинтез - это процесс образования органических веществ в зелёных растениях. Фотосинтез создал всю массу растений на Земле и насытил атмосферу кислородом.

Как питается растение?

Раньше люди были уверены, что все вещества для своего питания растения берут из почвы. Но один опыт показал, что это не так.

В горшок с землёй было посажено дерево. При этом измерили массу и земли, и дерева. Когда через несколько лет снова взвесили то и другое, оказалось, что масса земли уменьшилась всего на несколько граммов, а масса растения увеличилась на много килограммов.

В почву вносили только воду. Откуда же взялись эти килограммы растительной массы?

Из воздуха. Все органические вещества растений созданы из углекислого газа атмосферы и почвенной воды.

ТОП-2 статьи которые читают вместе с этой

Энергия

Животные и человек питаются растениями, чтобы получить энергию для жизни. Эта энергия содержится в химических связях органических веществ. Откуда она там?

Известно, что растение не может нормально расти без света. Свет и является энергией, с помощью которой растение строит органические вещества своего тела.

Не важно какой это свет, солнечный или электрический. Любой луч света несёт энергию, которая становится энергией химический связей и как клей удерживает атомы в больших молекулах органических веществ.

Где идёт фотосинтез

Фотосинтез проходит только в зелёных частях растений, а точней, в особых органах растительных клеток - хлоропластах.

Рис. 1. Хлоропласты под микроскопом.

Хлоропласты являются разновидностью пластид. Они всегда зелёные, т. к. содержат вещество зелёного цвета - хлорофилл.

Хлоропласт отделён от остального объёма клетки мембраной и имеет вид зёрнышка. Внутреннее пространство хлоропласта называется стромой. В ней и начинаются процессы фотосинтеза.

Рис. 2. Внутреннее строение хлоропласта.

Хлоропласты являются как бы фабрикой, на которую поступает сырьё:

  • углекислый газ (формула – СО₂);
  • вода (Н₂О).

Вода поступает из корней, а углекислый газ - из атмосферы через особые отверстия в листьях. Свет является энергией для работы фабрики, а полученные органические вещества - продукцией.

Сначала производятся углеводы (глюкоза), но впоследствии из них образуется множество веществ различных запахов и вкусов, которые так любят животные и люди.

Из хлоропластов полученные вещества транспортируются в различные органы растения, где откладываются в запас, либо используются.

Реакция фотосинтеза

В общем виде уравнение фотосинтеза выглядит так:

СО₂ + Н₂О = органические вещества + О₂ (кислород)

Зелёные растения входят в группу автотрофов (в переводе - «сам питаюсь») - организмов, которым для получения энергии не нужны другие организмы.

Основная функция фотосинтеза - создание органических веществ, из которых строится тело растений.

Выделение кислорода - побочный эффект процесса.

Значение фотосинтеза

Роль фотосинтеза в природе чрезвычайно велика. Благодаря ему создан весь растительный мир планеты.

Рис. 3. Фотосинтез.

Благодаря фотосинтезу растения:

  • являются источником кислорода для атмосферы;
  • переводят энергию солнца в доступную для животных и человека форму.

Жизнь на Земле стала возможной при накоплении достаточного количества кислорода в атмосфере. Ни человек, ни животные не смогли бы жить в те далёкие времена, когда его не было, или было мало.

Какая наука изучает процесс фотосинтеза

Фотосинтез изучают разные науки, но больше всего ботаника и физиология растений.

Ботаника - это наука о растениях и, поэтому изучает его как важный жизненный процесс растений.

Наиболее подробно изучает фотосинтез физиология растений. Учёные-физиологи определили, что этот процесс сложный и имеет стадии:

  • световую;
  • темновую.

Это значит, что фотосинтез начинается на свету, но заканчивается в темноте.

Что мы узнали?

Изучив данную тему по биологии 5 класса, можно объяснить кратко и понятно фотосинтез как процесс образования в растениях органических веществ из неорганических (СО₂ и Н₂О). Его особенности: проходит в зелёных пластидах (хлоропластах), сопровождается выделением кислорода, осуществляется под действием света.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 432.

Фотосинтез - это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах.

Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Основная роль фотосинтезирующих организмов:

1) трансформация энергии солнечного света в энергию химических связей органических соединений;

2) насыщение атмосферы кислородом;

В результате фотосинтеза на Земле образуется 150 млрд. т. органического веществаи выделяется около 200 млрд. т свободногокислородав год. Он препятствует увеличению концентрацииCO2в атмосфере, предотвращая перегрев Земли (парниковый эффект).

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы).

В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом

Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существования всего живого. Следовательно, роль фотосинтеза является планетарной.

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Суммарная реакция фотосинтеза

СО 2 2 О = (СН 2 О) + О 2 .

Химию фотосинтеза описывают следующими уравнениями:

Фотосинтез – 2 группы реакций:

    световая стадия (зависят от освещенности)

    темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы.

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

Фотосистема состоит из:

    реакционного центра фотосистемы (молекула хлорофилла а),

    антенных молекул

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

У растений:

    фотосистема 1 (максимум поглощения света на длине волны 700 нм - Р700)

    фотосистема 2 (максимум поглощения света на длине волны 680 нм - Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием .

Суммарное уравнение для нециклического фотофосфорилирования :

Ф - условное обозначение остатка фосфорной кислоты

Цикл начинается с фотосистемы 2.

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q при этом она окисляется и приобретает положительный заряд;

Кофактор (cofactor). Кофермент или любое другое вещество, необходимое для выполнения ферментом его функции

Коферменты (коэнзимы) [от лат. co (cum) - вместе и ферменты], органические соединения небелковой природы, участвующие в ферментативной реакции в качестве акцепторов отдельных атомов или атомных групп, отщепляемых ферментом от молекулы субстрата, т.е. для осуществления каталитического действия ферментов. Эти веществава, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны. Иногда под Коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в т. ч. и ионы, напр. К + , Mg 2+ и Мn 2+ . Располагаются оферменты. в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс.

Для проявления каталитической активности большинству ферментов необходимо наличие кофермента. Исключение составляют гидролитические ферменты (например, протеазы, липазы, рибонуклеаза), выполняющие свою функцию в отсутствие кофермента.

Молекула восстанавливается Р680 (под действием ферментов),. При этом вода диссоциирует на протоны и молекулярный кислород, т.е. вода является донором электронов, который обеспечивает восполнение электронов в Р 680.

ФОТОЛИЗ ВОДЫ - расщепление молекулы воды, в частности в процессе фотосинтеза. Вследствие фотолиза воды образуется кислород, выделяющийся зелеными растениями на свету.

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.



error: Контент защищен !!